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ABSTRACT
We deal with the following question: Can the consumption of con-
taminated bush meat, the funeral practices and the environmental
contamination explain the recurrence and persistence of Ebola virus
disease outbreaks in Africa? We develop an SIR-type model which,
incorporates both the direct and indirect transmissions in such a
manner that there is a provision of Ebola viruses. We prove that the
full model has one (endemic) equilibrium which is locally asymp-
totically stable whereas, it is globally asymptotically stable in the
absence of the Ebola virus shedding in the environment. For the sub-
model without the provision of Ebola viruses, the disease dies out or
stabilizes globally at an endemic equilibrium. At the endemic level,
the number of infectious is larger for the full model than for the sub-
model without provision of Ebola viruses. We design a nonstandard
finite difference scheme,whichpreserves thedynamics of themodel.
Numerical simulations are provided.
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1. Introduction

In 2014, an outbreak of Ebola virus (Ebola) decimated many people in Western Africa.
With more than 16,000 clinically confirmed cases and approximately 70%mortality cases,
this was the more deadly outbreak compared to 20 Ebola threats that occurred since 1976.
In almost all the outbreaks, the index case (first patient) became infected through con-
tact with infected animals (hunted for food), such as fruit bats and primates (ape, monkey,
and chimpanzee). This suggests that the virus can be spread by indirect contact [13]. As
reported in [7], a non-negligible percentage of the Ebola-Zaire virus type survived after 14
days at 4◦C on glass and plastic (10%) and on surfaces (3%). Moreover, 0.1–1% of Ebola
virus particles remained active for up to 50 days at 4◦C [31]. This survival of the virus in the
environment, due to poor hygienic and sanitary conditions, is probably another source of
Ebola infection inmany places inAfrica. InAfrica, and particularly in the regions that were
affected by Ebola outbreaks, people live close to the rain-forests, hunt bats and monkeys
and harvest forest fruits for food [23,24]. As part of their tradition and customs, Africans
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are warmhearted to the extent that even a contagious disease would not stop them from
caring for their relatives at home, kissing themselves and shaking hands. Furthermore, dur-
ing funerals, they wash and dress up their deceased relatives. They share, without proper
washing, clothes of their deceased relatives. The huge gatherings of people from surround-
ing villages, towns and cities are most likely among the major factors for the quick spread
of the Ebola virus infection in the region.

The above-mentioned considerations raise the following research question: Can the
consumption of contaminated bush meat, the funeral practices, and the environmental con-
tamination explain the recurrence and persistence of Ebolavirus disease (EVD) outbreaks
in Africa? Naturally, this question should be coupled with the well-known direct trans-
mission route, which involves contact with: (1) blood or body fluid (including but not
limited to urine, saliva, sweat, feces, vomit, breast milk, and semen); (2) objects (e.g.
clothes, bedding) that have been contaminated with body fluid. To address this ques-
tion, we develop a simple deterministic model that captures the African practices. The
model incorporates both the direct (human-to-human) and the indirect environmen-
tal (environment-to-human-to-environment) transmission routes [17,23,24,38]. It is an
extended susceptible-infectious-recovered-deceased (SIRD) model with an additional
environmental compartment (P) referred to as the pool of Ebola viruses.

The few existing works [1,2,10,15,16,19,21,22,30,32,35,37] on the mathematical mod-
elling for the transmission of the Ebola virus focus only on the human population and
direct transmission. As a matter of fact, almost all the mathematical studies for the trans-
mission dynamics of EVD outbreaks are described in classical settings, such as SI model
[37], SIR model [16,32], SEIR model [2,10,22], SEIRD model [15,30], or SEIRHD model
[1,19,21] where (S) stands for Susceptible, (E) for Infected, (I) for Infectious, (H) for Hos-
pitalized, (R) for Recovered/Removed, and (D) for Dead/Deceased. In the Central Africa
case, these studies [10,21,22,30] aimed mostly at estimating the epidemiological param-
eters and approximating the basic reproduction number. Thus, the earliest work [10]
published in 2004, used SEIRmodel to estimateR0 at 1.83 for Congo and 1.34 for Uganda.
Later in 2006, an SEIR model [22] led to estimatesR0 � 1.33 for Congo andR0 � 1.35
for Uganda. A different work based on an SEIRD model [21] and conducted in 2007 gave
the approximation R0 � 2.7 for both the 1995 Congo and the 2000 Uganda outbreaks.
The most recent work [21] for the Central Africa outbreaks was done in 2013. There, the
authors used a Markov Chain Monte Carlos method to estimate the parameters of their
SEIRD model and approximated the pre-interventionR0 at 2.1 and the post-intervention
R0 at 0.1339 for the 1995 Congo outbreak.

The emergence from 2014 of yet another Ebola outbreak in Africa, namely in Western
Africa has created a surge in the mathematical modelling of the EVD. A brief compar-
ison of the modelling approaches used with those of the Central Africa outbreaks is in
order.We restrict ourselves to three of themain features of the disease outbreak inWestern
Africa.

Let us talk first about the demographic dynamics. At the beginning of the Western
Africa outbreak, nobody expected the threat to last for more than two years. This con-
stitutes a sufficiently long period of time for the demographic process to be allow to
occur. However, none of themathematicalmodels investigated in 2014–2015 included vital
dynamics [2,10,15,16,35]. It is only towards the end of 2015 that modellers, realizing that
the outbreak was predicted to persist for several months should nothing be done to stop it
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Table 1. Basic reproduction numbers for someWestern Africa models.

Model type References R0 or its range per country or other factors

1.51 Guinea
SEIR model [2] 1.59 Liberia

2.53 Sierra Leone
SEIRD stochastic model [15] 12 infected individuals for first generation

0.4 infected individuals for third generation
SIR model time-dependent contact rate [16] [1.6, 2.0]
SIR stochastic model [32] 2.0

1.11 Guinea
SI model [37] 1.22 Liberia

1.18 Sierra Leone
Differentialsusceptibility-type model 1.41 Guinea, with traditional beliefs
with vital dynamics [1] [0.9, 1.2] Guinea, without traditional beliefs
Meta-population model 1.8 Guinea
with vital dynamics [19] 2.3 Liberia

2.4 Sierra Leone

[35], started incorporating the demographic dynamics in their works [1,19]. Secondly, the
Western Africa outbreak also distinguished itself by its internationalization which resulted
in the development of meta-population models [14,19]. Similarly to the works proposed
in the Central Africa case, there has been a great deal on the estimation of the basic
reproduction number R0 for most of the models studied from 2014, as summarized in
Table 1.

Since the first outbreak in 1995 in Congo, it was established that the index case (first-
infected individual), either ate contaminated bush meat hunted for food or had contact
with fruit bats [9,23,24]. Equally, in the Western Africa outbreak, it was identified that the
first case had contact with fruit bats and that the disease started in a small village near rain-
forest [9,32,38]. More importantly, the survival and the persistence of the Ebola viruses
in the environment as well as the environmental transmission of EVD have been recently
demonstrated [7,9,31,32,38]. Thus, the environment on the transmission dynamics of EVD
is the third main feature of the disease. This important characteristic has to the authors’
knowledge not been captured in the modelling of EVD.

Themain purpose of this paper is to incorporate (in a simplemanner) the indirect envi-
ronmental transmission on the dynamics of EVD and to assess the effect of such a feature
on the long run of the disease.

Our model extends and enriches several of the existing works in four main directions
as follows:

(i) We incorporate the transmission of deceased individuals during funerals. A compart-
ment for dead individuals is explicitly incorporated in [1,15,19,22,30].

(ii) We include the infection through the contaminated environment resulting from
African practices, hospitality and poor hygienic conditions. The consideration of this
important feature is new.

(iii) Unlike all the existing models in the literature, we include the provision or recruit-
ment source of Ebola virus linked to the consumption of bats, huntedmeat and fruits
from rain-forests.

(iv) We allow the demographic process (vital dynamics) to take place during the EVD
outbreaks. This aspect has only been considered recently [1,19].
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The model is carefully analysed theoretically and numerically. From the theoretical
point of view, we show in the following precise manner that the severity of the disease
increases with the recruitment/provision of Ebola viruses and the disease dies out in
the absence of such recruitment/provision as well as in the absence of shedding and
manipulation of deceased individuals:

(1) The full model has only one endemic equilibrium, which is LAS while in the absence
of shedding or manipulation of deceased individuals, this equilibrium is globally
asymptotically stable (GAS).

(2) For the model without recruitment/provision of Ebola viruses, the disease-free equi-
librium is GAS when the threshold quantity R0 is less than or equal to unity.
When the said threshold is greater than one, the endemic equilibrium is LAS in
the generic case and GAS in the absence of shedding and manipulation of deceased
individuals.

(3) At the endemic level, for both cases in items (1) and (2) above, the number of infected
individuals when there is provision of Ebola viruses is larger than the corresponding
number of infected individuals in the absence of such provision.

As it is the case for most systems of differential equations that govern real-life situations,
the deterministic model proposed in this work can unfortunately not be solved explic-
itly by analytic techniques. It is therefore essential and vital to design reliable numerical
methods that capture the essential properties of the continuous model. It is well known
that classical methods such as the Euler and the Runge–Kutta methods do not serve the
purpose [3,4,12]. Thus, from the numerical point of view, we apply the nonstandard finite
difference (NSFD) approach initiated by Mickens three decades ago, given its potential
to replicate the dynamics of continuous models in many applied areas such as ecology
and epidemiology [4,11,18,26–29]. In this new discrete framework, we conduct numer-
ical tests based on recent works reporting on Western Africa outbreaks [2,15,35]. Our
NSFD scheme, designed on the basis of an innovative use of Mickens rules on the non-
local approximation of nonlinear terms and complex denominator function of discrete
derivatives, preserves the positivity, the boundedness of solutions as well as the number
and the stability of equilibrium points. To the authors’ best knowledge, the NSFD approach
has never been used for the discrete models for the EVD.

The rest of the paper is organized as follows. In Section 2, we develop the model. The
basic properties (e.g. positivity, boundedness and global existence of the solution) are given
in Section 3. Sections 4 and 5 deal with the existence and stability of equilibrium points for
the sub-model and the full model, respectively. A dynamically consistent NSFD scheme is
presented in Section 6, which also includes numerical simulations that support the theory.
Concluding remarks on how our findings fit in the literature and on potential extensions
are given in Section 7.

2. Model formulation

To address the fundamental research question of explaining the recurrence and persis-
tence of EVD outbreaks in Africa from the consumption of contaminated bush meat,
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the funeral practices and the environmental contamination, we make the following
assumptions:

(1) Deceased human individuals can still infect during funerals. This assumption is moti-
vated by the African practices (e.g. washing of deceased individuals) during burial
ceremonies.

(2) Infectious and deceased human individuals shed the environment, especially through
their urine and stool. This happens in regions with poor sanitary facilities and/or in
regions where people do not observe appropriate hygienic practices.

(3) Human individuals can be infected through contaminated environment. This central
assumption is supported by several works. Firstly, we have the work [31], which estab-
lished the survival of filoviruses in liquids, surfaces and glasses. Secondly the findings
in [7] clearly demonstrated the persistence of Ebola virus in the environment while
the environmental contamination was evidenced in [38]. More importantly, it was
reported in [9] that human epidemics took off not only by direct contact via bodily flu-
ids but also by indirect contactwith contaminated surfaces. In particular, it was already
observed in [17] that an individual contracted the Ebola virus in Uganda after using
a blanket previously belonging to a positive case. The above-quoted references show
further that epidemiological data support the possibility of nosocomial transmission
through indirect contact with contaminated surfaces and fomites.

(4) We assume that the consumption of (contaminated) bush meat may result in the pro-
vision of Ebola viruses in the environment at a constant rate. This assumption makes
sense since, in Africa, and particularly in the regions that were affected by Ebola out-
breaks, people live close to the rain-forests, hunt bats and monkeys for meat and go to
the forest to harvest fruits for food [23,24],

(5) There is a permanent disease-induced immunity. This assumption is motivated by the
fact that it has never been reported that an individual caught the EVD for the second
time.

(6) We assume that there is a vital dynamics. Indeed, some of the Ebola outbreaks have
lasted more two years (for instance the Western Africa outbreak). Thus, during this
relatively long period of time, there might be new births or inflow of susceptible
individuals from other/surrounded places as well as natural deaths, which allow a
demographic process to take place, as studied in [1,19].

Based on the above-mentioned assumptions andmotivated by theworks in [7,17,23,24,31,38],
we develop a new deterministic model as follows:

The susceptible human population is replenished by a constant recruitment at rate π .
Susceptible individuals S may acquire infection after effective contacts β1 with infectious
and β2 with deceased human individuals. They can also catch the infection through con-
tact with a contaminated environment at rate λ. Infectious individuals I experience an
additional death due to the disease at rate δ and they are recovered at rate γ . Deceased
human individuals can be buried directly during funerals at rate b. Susceptible, infectious
and recovered individuals die naturally at rate μ.

As far as the assumption ( 4) above is concerned, the environment is contaminated by
the Ebola virus at a constant rate σ . Actually the inflow σ can be regarded as a kind of
‘black box’, which encompasses the provision of Ebola viruses in the environment by all
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Table 2. Variables and parameters for system (1).

Symbols Biological descriptions

S Susceptible human individuals
I Infectious human individuals
D Ebola infected and deceased human individuals
R Recovered human individuals
P Ebola virus pathogens in the environment
π Recruitment rate of susceptible human individuals
η Decay rate of Ebola virus in the environment
ξ Shedding rate of infectious human individuals
α Shedding rate of deceased human individuals
δ Disease-induced death rate of human individuals
β1 Effective contact rate of infectious human individuals
β2 Effective contact rate of deceased human individuals
λ Effective contact rate of Ebola virus
γ Recovered rate of human individuals
μ Natural death rate of human individuals
1/b Mean caring duration of deceased human individuals
σ Recruitment rate of Ebola virus in the environment

means. In this work, we focus on such a provision via the consumption of contaminated
bush meat and fruit bats. Although the recruitment rate σ can be modelled explicitly by
incorporating the dynamics of fruit bats and wildlife, we postpone this aspect to another
project with a more general model. Moreover, infectious and deceased human individuals
can shed the environment at rates ξ and α, respectively.

The model parameters are summarized in Table 2.
Following the flow chart in Figure 1, the dynamics of the model is governed by the

system of ordinary differential equations given by

dS(t)
dt

= π − (β1I + β2D + λP)S − μS,

dI(t)
dt

= (β1I + β2D + λP)S − (μ + δ + γ )I,

Figure 1. Ebola transmission diagram: black arrows represent the classical transfers in, out or in-
between for different compartments; the lines without arrows represent the interactions leading to
infection. The arrow from S to I represents both the infection and the in-between transfer. The lighter
arrows from I to P and from D to P represent the shedding.
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dR(t)
dt

= γ I − μR,

dD(t)
dt

= (μ + δ)I − bD,

dP(t)
dt

= σ + ξ I + αD − ηP. (1)

In principle, the mass action law is used for mathematical simplicity. However, this mass
action principle has some biological relevance for the case under consideration given the
correlation between the huge gatherings of people at funerals and the fast spread of EVD
in the region.

We stress that the proposedmodel (1) is new and extends the works [1,2,10,15,16,19,21,
22,30,32,35,37], as discussed in the introduction and also at the beginning of this section. In
particular, in considering infection through contact with deceased humans (during funer-
als), our model differs from [30], where an epidemiological class of death individuals was
considered, with nodisease-induced death rate, in that, we do not consider deceased indi-
viduals as an explicit compartment. However, these individuals are assumed to remain
infectious until they are buried.

System (1) is obviously appended with initial conditions

S(0) = S0, I(0) = I0, R(0) = R0, D(0) = D0, P(0) = P0.

Adding the first, the second and the third equations of (1), we obtain the conservation
law

dH(t)
dt

= π − μH − δI, (2)

where H= S+I+R is the total active human population, i.e. individuals that are alive.
Throughout this work, we make the natural additional assumption that the burial

rate b is less than or equal to the overall death rate μ + δ. If this condition is not met,
then the deceased human individuals completely disappear from the community and the
consideration of the compartment (D) in the model is irrelevant.

3. Well-posedness of themodel and equilibria

In this section, we prove that model (1) is well-posed. This is done in three steps below.

3.1. Well-posedness

Proposition 3.1: Assume that model (1) has a global solution corresponding to non-negative
initial conditions. Then the solution is non-negative at all time.

Proof: Assume that S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, D(0) ≥ 0 and P(0) ≥ 0.
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The first equation of model (1) can be written as

dS
dt

= π − A(t)S, where A(t) = α1(β1I + β2D + λP).

This is a linear first-order equation in S which has solution

S(t) = S(0) exp
(∫ t

0
−A(s) ds

)
+ exp

(∫ t

0
−A(s) ds

)
×

∫ t

0
π exp

(∫ u

0
A(w) dw

)
du

≥ 0.

Hence S(t) ≥ 0, ∀t ≥ 0. Regarding the non-negativity of the remaining variables, we
consider the subsystem

dI(t)
dt

= (β1I + β2D + λP)S − (μ + δ + γ )I,

dR(t)
dt

= γ I − μR,

dD(t)
dt

= (μ + δ)I − bD,

dP(t)
dt

= σ + ξ I + αD − ηP,

(3)

which can be rewritten in the matrix form
dY(t)
dt

= MY(t) + B(t), (4)

where

Y(t) =

⎛
⎜⎜⎝
I(t)
R(t)
D(t)
P(t)

⎞
⎟⎟⎠ , M =

⎛
⎜⎜⎝

β1S − (μ + δ + γ ) 0 β2S λS
γ −μ 0 0

μ + δ 0 −b 0
ξ 0 α −η

⎞
⎟⎟⎠ , B(t) =

⎛
⎜⎜⎝
0
0
0
σ

⎞
⎟⎟⎠ .

We note thatM is a Metzler matrix (i.e. with non-negative off-diagonal entries) in view of
the already established non-negativity of S. Thus, Equation (4) is a monotone system [34].
Therefore, R4+ is invariant under the flow of system (4). This completes the proof of the
proposition. �

We can now state and prove the following proposition, which guarantees the boundedness
of the solutions of system (1).

Proposition 3.2: Assume that the initial conditions for system (1) satisfy

H(0) ≤ Hm, D(0) ≤ Dm, P(0) ≤ Pm,

where

Hm = π

μ
, Dm = (μ + δ)π

bμ
and Pm = σbμ + bξπ + α(μ + δ)π

bημ
.

Then, whenever the solution exists on an interval J, it satisfies the following a priori bounds:

H(t) ≤ Hm, D(t) ≤ Dm, P(t) ≤ Pm.
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Proof: Since, I(t) ≥ 0, we have from Equation (2) that

dH(t)
dt

≤ π − μH.

Application of the Gronwall inequality yields

H(t) ≤ π

μ
+

(
H(0) − π

μ

)
e−μt ,

from which

H(t) ≤ Hm, whenever H(0) ≤ Hm.

Consequently, I(t) ≤ Hm. Replacing this in the fourth equation of (1) gives

dD(t)
dt

≤ (δ + μ)Hm − bD

from where another application of the Gronwall inequality leads to

D(t) ≤ Dm, if D(0) ≤ Dm.

The boundedness of P(t) is proved similarly. �

Combining Propositions 3.1 and 3.2 together with the trivial existence and uniqueness
of a local solution for the model (1), we have established the following theorem which
ensures the mathematical and biological well-posedness of system (1).

Theorem 3.3: System (1) is a dynamical system on the compact set

K =
{
(S(t), I(t), R(t), D(t), P(t)) ∈ R

5
+; H(t) ≤ π

μ
, D ≤ (μ + δ)π

bμ
,

P(t) ≤ b(σμ + ξπ) + απ(δ + μ)

bημ

}
.

3.2. Equilibria

In this subsection, we investigate the existence of equilibrium points of model (1). The
constant inflow σ of the Ebola viruses from the environment plays a significant role in the
study. This is at first seen from the obvious fact that there is no disease-free equilibrium if
σ is positive.
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Let E∗ = (S∗, I∗,R∗,D∗,P∗) be an equilibrium point, i.e.

π − (β1I∗ + β2D∗ + λP∗)S∗ − μS∗ = 0,

(β1I∗ + β2D∗ + λP∗)S∗ − (μ + δ + γ )I∗ = 0,

γ I∗ − μR∗ = 0,

(μ + δ)I∗ − bD∗ = 0,

σ + ξ I∗ + αD∗ − ηP∗ = 0.

(5)

Adding the first and the second equations in (5) and using the other equations, we have

S∗ = π − (μ + δ + γ )I∗

μ
, R∗ = γ

μ
I∗, D∗ = μ + δ

b
I∗,

P∗ = bσ + (bξ + αδ + αμ))I∗

bη
. (6)

Putting the expressions in Equation (6) into the second equation of (5), we obtain after
lengthy algebraic calculation, the quadratic equation in I∗

A2(I∗)2 − A1I∗ − A0 = 0, (7)

where

A2 = (μ + δ + γ )[η(bβ1 + β2(μ + δ)) + λ(bξ + αδ + αμ)],

A1 = A1(σ ) = ηπ(bβ1 + β2(μ + δ)) + λπ(bξ + αδ + αμ)

− bημ(μ + δ + γ ) − bλσ(μ + δ + γ ),

A0 = A0(σ ) = bλπσ .

(8)

In what follows, it is convenient to write A1(σ ), the only coefficient that can have different
signs, in the form

A1(σ ) = bημ(μ + δ + γ )

[
R0 − 1 − λσ

ημ

]
, (9)

where

R0 = ηπ(bβ1 + β2(μ + δ)) + λπ(bξ + αδ + αμ)

bημ(μ + δ + γ )

= πβ1

μ(μ + δ + γ )
+ (μ + δ)πβ2

bμ(μ + δ + γ )
+ λπ(bξ + αδ + αμ)

bημ(μ + δ + γ )
. (10)

Hereafter, thanks to Equation (7) and depending on the value of the virus recruitment rate
σ , the existence, the number and the bounds of the equilibrium points are discussed.

4. Model with Ebola virus-free environment

Throughout this section, we assume that there is no recruitment/provision of Ebola virus:
σ = 0.
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4.1. Existence of equilibria

Since A0(0) = 0 in this section, I∗ = 0 (component of the disease-free equilibrium E0) is
always a root of the quadratic Equation (7), while a unique positive root of Equation (7)
exists if and only if A1(0) > 0. Notice from Equation (9) that A1(0) > 0 if and only if
R0 > 1. Consequently, using Equations (6) and (10), the unique endemic equilibrium for
Equation (1) is given by

S∗ = π

μR0
; I∗ = π(R0 − 1)

(μ + δ + γ )R0
; R∗ = πγ (R0 − 1)

μ(μ + δ + γ )R0
,

D∗ = π(μ + δ)(R0 − 1)
b(μ + δ + γ )R0

; P∗ = π(bξ + αδ + αμ)(R0 − 1)
bη(μ + δ + γ )R0

.
(11)

The following theorem gives the number (depending on the range ofR0) of equilibria for
model (1).

Theorem 4.1:

(a) The model (1) always has a disease-free equilibrium E0 = (π/μ, 0, 0, 0, 0).
(b) IfR0 ≤ 1, there is no endemic equilibrium for model (1).
(c) If R0 > 1, there exits a unique endemic equilibrium E∗ = (S∗, I∗,R∗,D∗,P∗) given by

Equation (11).

Notice that the expression ofR0 above can be recovered using themethod in [36].More-
over, following the interpretation in [8],R0 is the sum of three infection contributions:

• RI
0 = πβ1/μ(μ + δ + γ ), the contribution of infectious humans I;

• RD
0 = π(μ + δ)β2/bμ(μ + δ + γ ), the contribution resulting from manipulation of

infected corpses D;
• RP

0 = πλ(bξ + αμ + αδ)/bημ(μ + δ + γ ), the contribution due to the environmen-
tal contamination by the virus P.

Remark 1: Assume that we use the standard incidence framework or keep themass action
framework with the initial susceptible population set to be unity. If the environmental class
(P) and the vital dynamics are neglected, then themodel (1) reduces toan SIRD-typemodel
[15,21,30]. The basic reproduction number of such a model is

RSIRD
0 = β1

δ + γ
+ δβ2

b(δ + γ )
.

Using the same parameter values as in [1,2,19,21,30], we observe that thisRSIRD
0 underes-

timates the basic reproduction numbers obtained in the literature as displayed in Table 3.

Table 3. Comparison of the basic reproduction numbers with or without environment class and vital
dynamics.

Symbols [1] [2] [19] [21] [30]

R0 1.6 1.51 1.8 2.7 2.1
RSIRD

0 1.58 1.39 1.02 1.87 1.17
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Thus, the importance of the environmental contamination on the dynamics of EVD is
further reinforced in order to obtain more accurate basic reproduction numbers, an aspect
that is however not the main focus of this work.

Note also that in the absence of themodelling assumption (6) (i.e. there no demographic
process), our model falls into the group of ‘no vital dynamics models’. We then automati-
cally loose the so-called environmental virus-free endemic equilibrium I∗. Therefore, the
theoretical comparison of the disease at the endemic level (which is another main aim of
this work) is not possible.

4.2. Stability analysis of equilibria

System (1) is biologically meaningful in the compact and invariant region defined by

K0 =
{
(S(t), I(t), R(t), D(t), P(t)) ∈ K/H(t) ≤ π

μ
, D ≤ (μ + δ)π

bμ
,

P(t) ≤ bξπ + α(μ + δ)π

bημ

}
.

The local stability of the disease-free equilibriumwhenR0 ≤ 1 and its instability whenever
R0 > 1 follow from the well-known result in [5,36]. For the global stability, we have the
following result.

Theorem4.2: The disease-free equilibriumE0 = (π/μ, 0, 0, 0, 0) of subsystem (1) is globally
asymptotically stable (GAS) ifR0 ≤ 1.

Proof: Let S0 = π/μ and consider the following combination of linear functions and
Volterra-type Lyapunov function:

L0 = L0(S, I,D,R,P) = S − S0 ln(S) + I + c1D + c2P.

Using the fact that π = μS0, the Lie derivative of L0 in the direction of the vector field
given by the right-hand side of Equation (1) is

L̇0 = dS
dt

(1 − S0/S) + dI
dt

+ c1
dD
dt

+ c2
dP
dt

,

= −μ

S
(S − S0)2 + [c1(μ + δ) + c2ξ + β1S0 − (μ + δ + γ )]I

+ (c2α + β2S0 − c1b)D + (λS0 − c2η)P.

Choose c1 and c2 such that

c2α + β2S0 − c1b = 0 and λS0 − c2η = 0.

Thus,

c1 = ηβ2S0 + αλS0
bη

, c2 = λS0
η

.
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With this in mind, L̇0 becomes

L̇0 = −μ

S
(S − S0)2 +

[
ηβ2(μ + δ)S0 + δαλS0

bη
+ ξλS0

η
+ β1S0 − (μ + δ + γ )

]
I,

= −μ

S
(S − S0)2 + [η(β2(μ + δ) + bβ1)]

S0I
bη

+ [λ(bξ + α(μ + δ))S0 − bη(μ + δ + γ )]
I
bη

,

= −μ

S
(S − S0)2 + bη(μ + δ + γ )(R0 − 1)

I
bη

≤ 0.

Since it is easy to see that the largest invariant subset contained in the set

E = {(S, I,R,D,P) ∈ K0/L̇0 = 0}
is the disease-free equilibrium E0, we conclude by LaSalle’s Invariance Principle [20]. �

Proposition 4.3: The endemic equilibrium E∗ of subsystem (1) is LAS ifR0 > 1.

The proof of this result is postponed to Section 5, where the proof of the LAS of the
unique equilibrium E# (σ > 0) is given. Proposition 4.3 will follow by letting σ = 0.

Theorem 4.4: In the absence of shedding (α = 0) or manipulation of deceased human
individuals before burial (ξ = 0) the endemic equilibrium E∗ exists and is GAS whenever
R0 > 1.

Proof: We consider a Volterra-type Lyapunov function

L1 = L(S, I,R,D,P)

= a1(S − S∗ ln S) + a2(I − I∗ ln I) + a3(D − D∗ lnD) + a4(P − P∗ ln P),

where a1, a2, a3 and a4 are four non-negative constants to be determined shortly.
The derivative L̇1 of L1 along the trajectories of model (1) is

L̇1 = a1
dS
dt

(1 − S∗/S) + a2
dI
dt

(1 − I∗/I) + a3
dD
dt

(1 − D∗/D) + a4
dP
dt

(1 − P∗/P),

= a1(1 − S∗/S)[π − μs − β1SI − β2SD − λSP]

+ a2(1 − I∗/I)[β1SI + β2SD + λSP − (μ + δ + γ )I]

+ a3(1 − D∗/D)[(μ + δ)I − bD] + a4(1 − P∗/P)[ξ I + αD − ηP].

Since E∗ is an equilibrium point, the following relations hold:

π = −μS∗ − β1S∗I∗ − β2S∗D∗ − λS∗P∗,

(μ + δ + γ )I∗ = β1S∗I∗ + β2S∗D∗ + λS∗P∗,

(μ + δ)I∗ = bD∗,

ηP∗ = ξ I∗ + αD∗.

(12)
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Using the relations in Equation (12), L̇1 becomes

L̇1 = a1
(
1 − S∗

S

)
[μS∗ + β1S∗I∗ + β2S∗D∗ + λS∗P∗ − μs − β1SI − β2SD − λSP]

+ a2
(
1 − I∗

I

) [
β1SI + β2SD + λSP − β1S∗I − β2S∗D∗ I

I∗
− λS∗P∗ I

I∗

]

+ a3
(
1 − D∗

D

) [
(μ + δ)I − (μ + δ)I∗

D
D∗

]

+ a4
(
1 − P∗

P

) [
ξ I + αD − (ξ I∗ + αD∗)

P
P∗

]
.

After the expansion and grouping of the expression above, we have

L̇1 = −μa1
(S − S∗)2

S
+ β1S∗I∗(a1 + a2) + β2S∗D∗(a1 + a2) + β1SI(−a1 + a2)

+ β2SD(−a1 + a2) + λSP(−a1 + a2) +
[
a4α + a1β2S∗ − a3(μ + δ)

I∗

D∗

]
D

+
[
a1λS∗ − a4ξ

I∗

P∗ − a4α
D∗

P∗

]
P

+
[
a1β1S∗ − a2β1S∗ + a3(μ + δ) − a4ξ − a2β2

S∗D∗

I∗
− a2λ

S∗P∗

I∗

]
I

− a1β1
S∗2I∗

S
− a1β2

S∗2D∗

S
− a1λ

S∗2P∗

S
− a2β1SI∗ − a2β2

SDI∗

I

− a2λ
SPI∗

I
− a3(μ + δ)

ID∗

D
− a4ξ

IP∗

P
− a4α

DP∗

P
+ a4ξ I∗

+ a3(μ + δ)I∗ + a4αD∗ + λS∗P∗(a1 + a2). (13)

Choose a1, a2, a3 and a4 such that the expressions in the brackets vanish. That is

a1λS∗ − a4ξ
I∗

P∗ − a4α
D∗

P∗ = 0,

a4α + a1β2S∗ − a3(μ + δ)
I∗

D∗ = 0,

a1β1S∗ − a2β1S∗ + a3(μ + δ) − a4ξ − a2β2
S∗D∗

I∗
− a2λ

S∗P∗

I∗
= 0.

(14)

Fixing a1 = bη and exploiting Equation (12) to solve Equation (14) for a2, a3, a4 yields

a2 = a1; a3 = a1
ηβ2S∗ + αλS∗

bη
; a4 = a1

λS∗

η
. (15)
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Replacing Equation (15) in (13) gives

L̇1 = −μa1
(S − S∗)2

S
+ 2a1β1S∗I∗ + 2a1β2S∗D∗ + 2a1λS∗P∗ − a1β1

S∗2I∗

S

− a1β2
S∗2D∗

S
− a1λ

S∗2P∗

S
− a1β1SI∗ − a1β2

SDI∗

I
− a1λ

SPI∗

I

− a1(μ + δ)

(
ηβ2S∗ + αλS∗

bη

)
ID∗

D
− a1ξ

λS∗IP∗

ηP
− a1α

λS∗DP∗

ηP
+ a1ξ

λS∗I∗

η

+ a1(μ + δ)

(
ηβ2S∗ + αλS∗

bη

)
I∗ + a1α

λS∗D∗

η
.

Grouping some terms in the expression above yields

L̇1 = a1β1S∗I∗
(
2 − S∗

S
− S

S∗

)
+ a1β2S∗D∗

(
2 − S∗

S
− SDI∗

S∗D∗I

)

+ a1λS∗P∗
(
2 − S∗

S
− SPI∗

S∗P∗I

)
− a1(μ + δ)

ηβ2S∗D∗I
bD

− a1δ
αλS∗D∗I
bηD

− a1ξ
λS∗P∗I

ηP
− a1α

λS∗P∗D
ηP

+ a1ξ
λS∗I∗

η
+ a1δ

ηβ2S∗I∗

b
+ a1(μ + δ)

αλS∗I∗

bη

+ a1α
λS∗D∗

η
− μa1

(S − S∗)2

S
,

or equivalently

L̇1 = a1β1S∗I∗
(
2 − S∗

S
− S

S∗

)
+ a1β2S∗D∗

(
3 − S∗

S
− SDI∗

S∗D∗I
− ID∗

I∗D

)

+ a1λS∗P∗
(
3 − S∗

S
− SPI∗

S∗P∗I

)
− a1(μ + δ)

αλS∗D∗I
bηD

− a1ξ
λS∗P∗I

ηP

− a1α
λS∗P∗D

ηP
+ a1(μ + δ)

αλS∗I∗

bη
− μa1

(S − S∗)2

S
. (16)

Using Equations (12) and (15), one can see that

a1(μ + δ)
αλS∗I∗

bη
= a1

αλS∗D∗

η
= a1

λS∗(ηP∗ − ξ I∗)
η

= a1λS∗P∗ − a1
ξλS∗I∗

η
.

Putting this in Equation (16) and performing some algebraic manipulations, we obtain

L̇1 = a1β1S∗I∗
(
2 − S∗

S
− S

S∗

)
+ a1β2S∗D∗

(
3 − S∗

S
− SDI∗

S∗D∗I
− ID∗

I∗D

)

+ a1λS∗P∗
(
4 − S∗

S
− SPI∗

S∗P∗I
− ξ I

ηP
− ηP∗

ξ I∗

)
− a1(μ + δ)

αλS∗D∗I
bηD

− a1α
λS∗P∗D

ηP
− a1ξ

λS∗I∗

η
+ a1η

λS∗P∗2

ξ I∗
− μa1

(S − S∗)2

S
,
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= a1β1S∗I∗
(
2 − S∗

S
− S

S∗

)
+ a1β2S∗D∗

(
3 − S∗

S
− SDI∗

S∗D∗I
− ID∗

I∗D

)
,

+ a1λS∗P∗
(
4 − S∗

S
− SPI∗

S∗P∗I
− ξ I

ηP
− ηP∗

ξ I∗

)
− a1(μ + δ)

αλS∗D∗I
bηD

− a1α
λS∗P∗D

ηP
+ a1αD∗ (2ξ I∗ + αD∗)

ηξP∗I∗
− μa1

(S − S∗)2

S
. (17)

Henceforth,
Case 1 if α = 0, then we have

L̇1 = a1β1S∗I∗
(
2 − S∗

S
− S

S∗

)
+ a1β2S∗D∗

(
3 − S∗

S
− SDI∗

S∗D∗I
− ID∗

I∗D

)

+ a1λS∗P∗
(
4 − S∗

S
− SPI∗

S∗P∗I
− ξ I

ηP
− ηP∗

ξ I∗

)
− μa1

(S − S∗)2

S
.

Case 2 if ξ = 0, then

ξ I∗ = ηP∗, a1(μ + δ)
αλS∗I∗

bη
= a1λS∗P∗,

a1(μ + δ)
αλS∗D∗I
bηD

= a1
λS∗P∗D∗I

DI∗
, a1α

λS∗P∗D
ηP

= a1
λS∗P∗2D
PD∗ .

With this in mind, Equation (17) can be rewritten as

L̇1 = a1β1S∗I∗
(
2 − S∗

S
− S

S∗

)
+ a1β2S∗D∗

(
3 − S∗

S
− SDI∗

S∗D∗I
− ID∗

I∗D

)

+ a1λS∗P∗
(
3 − S∗

S
− SPI∗

S∗P∗I

)
− a1(μ + δ)

αλS∗D∗I
bηD

− a1ξ
λS∗P∗I

ηP

− a1α
λS∗P∗D

ηP
+ a1(μ + δ)

αλS∗I∗

bη
− μa1

(S − S∗)2

S,

= a1β1S∗I∗
(
2 − S∗

S
− S

S∗

)
+ a1β2S∗D∗

(
3 − S∗

S
− SDI∗

S∗D∗I
− ID∗

I∗D

)

+ a1λS∗P∗
(
3 − S∗

S
− SPI∗

S∗P∗I

)
− a1

λS∗P∗D∗I
DI∗

− a1
λS∗P∗2D
PD∗

+ a1λS∗P∗ − μa1
(S − S∗)2

S
,

= a1β1S∗I∗
(
2 − S∗

S
− S

S∗

)
+ a1β2S∗D∗

(
3 − S∗

S
− SDI∗

S∗D∗I
− ID∗

I∗D

)

+ a1λS∗P∗
(
4 − S∗

S
− SPI∗

S∗P∗I
− D∗I

DI∗
− P∗D

PD∗

)
− μa1

(S − S∗)2

S
.

In both cases, using the arithmetic-geometric mean inequality, one conclude that L̇1 ≤ 0.
Thus, L1 is indeed a Lyapunov function. Furthermore,

L̇1 = 0 ⇐⇒ (S, I,R,D,P) = (S∗, I∗,R∗,D∗,P∗) = E∗.



58 T. BERGE ET AL.

Therefore, the largest invariant subset contained in the set

E∞ = {(S, I,R,D,P) ∈ K0/L̇1 = 0}

is the endemic equilibrium E∗. We conclude by LaSalle’s Invariance Principle that E∗ is
GAS [20]. �

5. The full model with σ > 0

The terminology ‘full model’ refers to the fact that there is a recruitment/provision σ of
Ebola viruses. Thus, we assume throughout this section that σ > 0.

5.1. Existence and stability of equilibria

The number and local asymptotic stability of equilibria are investigated in the following
result:

Theorem 5.1: The system (1) has a unique endemic equilibrium point denoted by E# =
(S#, I#,R#,D#,P#), where I# is the unique positive root of the quadratic Equation (7). The
equilibrium point E# is LAS.

Proof: Since the coefficientsA2, A1 andA0 are positive, it follows fromDescarte’s sign rule
that Equation (7) has a unique positive root

I# =
A1 +

√
A2
1 + 4A2A0

2A2
.

From this relation and Equation (6), we obtain the other coordinates of E#, namely:

S# =
2πA2 − (μ + δ + γ )(A1 +

√
A2
1 + 4A2A0)

2μA2
,

R# =
γ (A1 +

√
A2
1 + 4A2A0)

2μA2
,

D# =
(μ + δ)(A1 +

√
A2
1 + 4A2A0)

2bA2
,

P# =
2bσA2 + (bξ + αδ + αμ)(A1 +

√
A2
1 + 4A2A0)

2bηA2
.

The local asymptotic stability of the unique steady-state E# is established using the
Routh–Hurwitz criterion, as detailed in the appendix. �
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The stability in Theorem 5.1 can be partially improved as follows:

Proposition 5.2: In the absence of shedding and manipulation of deceased human individ-
uals before burial, i.e. ξ = α = 0, the unique endemic equilibrium E# is GAS.

Proof: We consider the Volterra-type Lyapunov candidate function

Q = Q(S, I,D,R,P)

= (S − S# ln S) + (I − I# ln I) + k1(D − D# lnD) + k2(P − P# ln P), (18)

where the constants k1 and k2 will be determined shortly. Since E# is an equilibrium, the
following relations hold:

π = −μS# − β1S#I# − β2S#D# − λS#P#,

(μ + δ + γ )I# = β1S#I# + β2S#D# + λS#P#,

(μ + δ)I# = bD#,

ηP# = σ .

(19)

Using Equation (19) in the expression of Q̇, the derivative ofQ along the trajectories, it can
be shown as in the proof of Theorem 4.4 that

Q̇ = −μ
(S − S#)2

S
+ β1S#I#

(
2 − S#

S
− S

S#

)
+ β2S#D#

(
2 − S#

S
− SDI#

S#D#I

)

+ λS#P#
(
2 − S#

S
− SPI#

S#P#I

)
+

[
β2S# − k1(μ + δ)

I#

D#

]
D

+ (λS# − k2η)P +
[
k1(μ + δ) − β2

S#D#

I#
− λ

S#P#

I#

]
I

+ 2k2ηP# − k2η
P#2

P
− k1(μ + δ)

ID#

D
+ k1(μ + δ)I#.

Now, we choose k1 and k2 such that

λS# − k2η = 0

k1(μ + δ) − β2
S#D#

I#
− λ

S#P#

I#
= 0,

(20)

or equivalently

k1 = β2S#D# + λS#P#

δI#
, k2 = λS#

η
.

With the relations (19) and (20) in mind,

β2S# − k1(μ + δ)
I#

D# = −σ
λS#

ηD# = −λS#P#

D# .
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Thus,

Q̇ = −μ
(S − S#)2

S
+ β1S#I#

(
2 − S#

S
− S

S#

)
+ β2S#D#

(
2 − S#

S
− SDI#

S#D#I

)

+ λS#P#
(
2 − S#

S
− SPI#

S#P#I

)
− λS#P#D

D# + 2λS#P#

− λS#P#2

P
− (β2S#D# + λS#P#)

ID#

I#D
+ β2S#D# + λS#P#

= β1S#I#
(
2 − S#

S
− S

S#

)
+ β2S#D#

(
3 − S#

S
− SDI#

S#D#I
− ID#

I#D

)

+ λS#P#
(
5 − S#

S
− SPI#

S#P#I
− ID#

I#D
− D

D# − P#

P

)
− μ

(S − S#)2

S
.

Using the arithmetic-geometric mean inequality, we have Q̇ ≤ 0, which means that Q is
indeed a Lyapunov function. Furthermore,

Q̇ = 0 ⇐⇒ (S, I,R,D,P) = (S#, I#,R#,D#,P#) = E#.

The conclusion follows from LaSalle’s Invariance Principle, which gives the global asymp-
totic stability of E# [20]. �

Remark 2: We note that the model developed in this paper does not take into account any
Ebola control strategy. Furthermore, the epidemic in the Western Africa has persisted for
more than two years. Also, the estimated basic reproduction numbers are generally greater
than the unity, as reported in the introduction. In viewof these three facts, it is reasonable to
expect that the epidemic, as modelled here, establishes itself at an endemic level, as shown
in Theorem 4.4 and Proposition 5.2. These findings should not be regarded as inconsistent
with the reality observed on the field (where the disease outbreak in some places fade out
after some period of times). Typically, the relative quick clearance of the EVD is actually
due to some adequate control measures put in place by healthcare authorities, an aspect
which, we repeat, is not incorporated in the current model.

The epidemiological implication of the consumption of contaminated bush meat (i.e.
σ > 0) is an increase in the endemic level of the disease, as described in the next
result.

Theorem 5.3: The infectious component I# = I#(σ ) of the endemic equilibrium point is a
strictly monotonic increasing function on the interval 0 ≤ σ < ∞, with I#(0) = I∗ denoting
the infectious component of the unique endemic equilibrium point E∗ in Equation (11) when
σ = 0.
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Proof: We show that

∂I#(σ )

∂σ
> 0 for σ ≥ 0.

Let

�(σ) =
√
A2
1(σ ) + 4A0(σ )A2.

Then, on the one hand,

∂I#(σ )

∂σ
= 2bλπA2 − bλ(μ + δ + γ )A1 − bλ(μ + δ + γ )�

2A2�
.

On the other hand, one can easily show that

2bλπA2 − bλ(μ + δ + γ )A1 = bλ(μ + δ + γ )[A1 + 2(bημ + bλσ)(μ + δ + γ )].

Thus, if

∇ = 2(bημ + bλσ)(μ + δ + γ ),

then

∂I#(σ )

∂σ
= bλ(μ + δ + γ )(∇ − �)

2A2�
.

But, direct calculations show that

∇2 − �2 = 4bημ(μ + δ + γ )[A1 + μ + δ + γ ] > 0.

This proves the theorem. �

Remark 3: As mentioned earlier, Theorem 5.3 provides interesting answers to the main
research question considered in this paper. To be more specific, we assume that human
individuals consume contaminated bush meat and fruit bats while there is an outbreak of
EVD. Then the endemic level of the disease increases with the said consumption to the
extent that the number of infected individuals is larger than the corresponding number of
infected individuals when there is no such consumption: I# > I∗. Therefore, a naturalmea-
sure of lowering down the severity of the disease is to educate people not to eat bush meat
and/or fruit bats. Looking at this in conjunction with Proposition 5.2 and in accordance
with the comment at the end of Remark 2, the disease can go to extinction if the educational
programme is broadened against funeral practices and environmental contamination in
order to have ξ = α = 0. This educational control programme paid off during the 1976
DRC (Zaïre) Ebola outbreak: the disease was cleared out of the afflicted population.

6. NSFDmethod

In this section, we design an NSFD scheme [3] that replicates the dynamics of the
continuous model (1).
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6.1. Construction of the scheme

Let Xn = (Sn, In,Dn,Rn,Pn)T denote an approximation of X(tn) where tn = n�t, with
n ∈ N, h = �t > 0 being the step size.

We propose the NSFD scheme

Sn+1 − Sn
φ

= π − (β1In + β2Dn + λPn)Sn+1 − μSn+1,

In+1 − In
φ

= (β1In + β2Dn + λPn)Sn+1 − (μ + δ + γ )In+1,

Rn+1 − Rn
φ

= γ In+1 − μRn+1,

Dn+1 − Dn

φ
= (μ + δ)In+1 − bDn+1,

Pn+1 − Pn
φ

= σ + ξ In + αDn − ηPn+1,

(21)

for the model (1), where

φ = φ(h) = 1 − e−(μ+δ+γ )h

μ + δ + γ
. (22)

The discrete method (21) is indeed an NSFD scheme because it is constructed according
to Mickens’ rules [26] formalized as follows in [3]:

Rule 1. The standard denominator h = �t of the discrete derivatives is replaced by
the complex denominator function in Equation (22) which satisfies the asymptotic
relation

φ(h) = h + O(h2). (23)

Note that the denominator function φ is expected to better capture the dynamics of
the continuous model through the presence of the underlying parameters μ, δ and γ .
In fact, exact schemes for a wide range of dynamical systems involve such complex
denominator functions [25,33].

Rule 2. Nonlinear terms in the right-hand side of Equation (1) are approximated in a
non-local way. For instance, we have

P(tn)S(tn) � PnSn+1 insteadof P(tn)S(tn) � PnSn. (24)

6.2. Analysis of the scheme

Theorem 6.1: The NSFD scheme (21) is a dynamical system on the biological feasible
domainK of the continuous model (1).
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Proof: First, we prove the positivity of the scheme (21). It is easy to show that the NFSD
scheme (21) takes the explicit form

Sn+1 = πφ + Sn
1 + φ(μ + Bn)

,

In+1 = [1 + φ(μ + Bn)]In + φ(πφ + Sn)Bn
[1 + φ(μ + δ + γ )][1 + φ(μ + Bn)]

Rn+1 = [1 + φ(μ + δ + γ )][1 + φ(μ + Bn)]Rn
(1 + μφ)[1 + φ(μ + δ + γ )][1 + φ(μ + Bn)]

+ γφ[(1 + φ(μ + Bn))In + φ(πφ + Sn)Bn]
(1 + μφ)[1 + φ(μ + δ + γ )][1 + φ(μ + Bn)]

Dn+1 = [1 + φ(μ + δ + γ )][1 + φ(μ + Bn)]Dn

(1 + bφ)[1 + φ(μ + δ + γ )][1 + φ(μ + Bn)]

+ (μ + δ)φ[(1 + φ(μ + Bn))In + φ(πφ + Sn)Bn]
(1 + bφ)[1 + φ(μ + δ + γ )][1 + φ(μ + Bn)]

Pn+1 = φ(σ + ξ In + αDn) + Pn
1 + ηφ

,

(25)

where we set

Bn = β1In + β2Dn + λPn.

Thus

Sn+1 ≥ 0, In+1 ≥ 0, Rn+1 ≥ 0, Dn+1 ≥ 0 and Pn+1 ≥ 0,

whenever the discrete variables are non-negative at the previous iteration.
It remains to prove the positive invariance of K. Adding the first, the second and the

third equations in (21), one has

Hn+1(1 + φμ) = φπ + Hn − δφIn+1 ≤ πφ + Hn.

Therefore,

Hn+1 ≤ π

μ
whenever Hn ≤ π

μ
.

The a priori bounds forDn+1 and Pn+1 follow readily from the fact thatDn+1 and In+1 are
less than or equal to Hn+1. This completes the proof. �

Following the approach in [3] (Theorem 15) and in [11] (Theorem 2), it can be shown
that the NSFD scheme preserves the properties of the continuous model (1) given in
Proposition 4.3 and in Theorem 5.1 in the precise manner described below.

Theorem 6.2: The discrete scheme (21) preserves the equilibrium points of the continuous
model (1). That is, on the one hand, the NSFD scheme (21) preserves the equilibrium points
of the continuous model (1) in the sense that the only fixed points of the scheme (21) are either
the endemic equilibrium point of the continuousmodel (1)when σ > 0 or its disease-free and
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endemic equilibria when σ = 0. On the other hand, the fixed points have the same stability
properties as the equilibrium points.

Theorem 6.3: (1) The disease-free fixed point (resp. the endemic fixed point ) of the
NSFD scheme (21) for the model without recruitment/provision of Ebola viruses is GAS
wheneverR0 ≤ 1 (resp. wheneverR0 > 1).

(2) The endemic fixed-point of the NSFD scheme (21) for the full model is GAS.

Proof: Let (Xn) ∈ R
5+ be the bounded sequence defined by the NFSD scheme (21). We

want to prove that Xn tends to X∗, where X∗ is any of the fixed point in Theorem 6.3. By
Bolzano Weierstrass theorem, there exists a subsequence (Xnk) of (Xn) that converge to
some Y∗ as k → +∞.

By the assumption made above and the structure of the NSFD scheme (21), Y∗ = X∗ is
necessarily either the unique disease-free fixed-point E0 (wheneverR0 ≤ 1) or the unique
endemic fixed-point E∗ or the unique endemic E#, which is LAS thanks to Theorem 6.2.
Therefore, there exists θ > 0 such that for an initial condition X0 satisfying

‖X0 − X∗‖ ≤ θ , wehave lim
n→+∞ ‖Xn − X∗‖ = 0. (26)

Let X0 be an arbitrary initial condition. As limk→+∞ Xnk = X∗,

there exists an integer k0 such that ‖Xnk0 − X∗‖ ≤ θ . (27)

In view of Equations (26) and (27), we have

lim
n→+∞, n≥1

‖Xn − X∗‖ = lim
n→+∞, n≥nk0

‖Xn − X∗‖ = 0. (28)

This proves that X∗ is GAS. �

We conclude this section by providing some numerical simulations. The parameters
displayed in Table 4 are mostly taken from recent works on the Western Africa Ebola
outbreaks [2,15,35]. The simulations are performed using the NSFD scheme (21) and
coded with MatLab. In contrast to Figure 2(a) where Ode45 exhibits negative solutions,
Figure 2(b) illustrates the power of the NSFD scheme (21) to produce positive solutions

Table 4. Numerical values for parameters of model (1).

Symbol Biological description Range Source

π Recruitment rate of susceptible human individuals variable Assumed
η Decay rate of Ebola virus in the environment (0,∞) [7,31]
ξ Shedding rate of infectious human individuals (0,∞) Assumed
α Shedding rate of deceased human individuals (0,∞) Assumed
δ Disease-induced death rate of human individuals [0.4, 0.9] [2,10,16]
β1 Effective contact rate of infectious human individuals variable [10,21,35]
β2 Effective contact rate of deceased human individuals variable [16,35]
λ Effective contact rate of Ebola virus variable Assumed
γ Recovered rate of human individuals (0, 1) [10,21,35]
μ Natural death rate of human individuals (0, 1) [30]
b Burial rate of deceased human individuals (0, 1) [15,35]
σ Recruitment rate of Ebola virus in the environment variable Assumed
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Figure 2. (a) Example of spurious negative solutions obtained with the ode45 implemented in MatLab.
(b) Positive solutions obtained with the Nonstandard scheme (21) implemented in MatLab. Both graphs
are sketched with the following parameters: μ = 0.5; δ = 0.05; γ = 0.06; π = 10; b = 0.8; ξ =
0.04; α = 0.04; η = 0.03; λ = 0.01; β1 = 0.006; β2 = 0.012; σ = 0 : R0 = 0.0602.

Figure 3. (a) GAS of the disease-free E0. (b) GAS of the endemic equilibrium E∗, when σ = 0
(R0 = 24.7 > 1). For (a), the parameters are: μ = 0.03; δ = 0.5; γ = 0.006; π = 10; b = 0.8; ξ =
0.0004; α = 0.004; η = 0.03; λ = 0.0001; β1 = 0.006; β2 = 0.012. For (b), the parameters are:
μ = 0.02; δ = 0.9; γ = 0.06; π = 10; b = 0.8; ξ = 0.04; α = 0.04; η = 0.03; λ = 0.01; β1 =
0.006; β2 = 0.012.

for any value of the step size h (h=4). Figure 3(a) shows the global asymptotic stability
of the disease-free equilibrium E0 as established in Theorem 4.2. Figure 3(b) supports the
global asymptotic stability of the endemic equilibrium E∗ in Theorem 4.4.

In accordance with Theorems 5.2 and 6.3, the global asymptotic stability of the equi-
librium E# is displayed in Figure 4(a). Figure 4(b) compares I∗ and I# as demonstrated in
Theorem 5.3. For Figure 4(b), we choose the same set of parameters as in Figure 3(b),
except that σ = 0 (blue) and σ = 0.6 > 0 (red).
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Figure 4. (a) Stability of E#, whenσ = 0.6 (see Theorem5.1); (b) Comparison of I∗ and I#.μ = 0.02; δ =
0.9; γ = 0.06; π = 10; b = 0.8; ξ = 0.04; α = 0.04; η = 0.03; λ = 0.01; β1 = 0.006; β2 = 0.012.
Moreover, for the blue dotted curve, σ = 0 andR0 = 24.7 > 1, whereas for the red curve, σ = 0.6.

7. Conclusion

The transmission dynamics of the Central and Western Africa Ebola outbreaks has been
relatively more studied in the direct (human-to-human) route [1,2,10,15,16,19,21,22,30,
32,35,37] than in the indirect environmental (environment-to-human-to-environment)
route. In this paper, we have focused on the latter route, which is one of the main char-
acteristics of the EVD, specifically in Western Africa [7,9,31,32,38]. Rather than dealing
only with the direct transmission, we formulated the main research question in the follow-
ing comprehensive manner in order to incorporate the unavoidable indirect transmission
route: Can the consumption of contaminated bush meat, the funeral practices, and the
environmental contamination explain the recurrence and persistence ofEVD outbreaks in
Africa? More precisely, we enriched the classical SIR model with two additional compart-
ments of deceased individuals who undergo funeral practices and free-living viruses with
vital dynamics. In this double setting of direct and indirect transmissions, we made major
contributions in two directions.

From the theoretical point of view, we showed in the following precise manner that the
severity of the disease increases with the recruitment/provision of Ebola viruses and the
disease dies out in the absence of such recruitment/provision as well as in the absence of
shedding and manipulation of deceased individuals:

(i) The full model has only one endemic equilibrium, which is locally asymptotically sta-
ble (LAS) while in the absence of shedding or manipulation of deceased individuals,
this equilibrium is GAS.

(ii) For the model without recruitment/provision of Ebola viruses, the disease-free equi-
librium is GAS when the threshold quantity is less than or equal to unity. When the
said threshold is greater than one, the endemic equilibrium is LAS in the generic case
and GAS in the absence of shedding and manipulation of deceased individuals.
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(iii) At the endemic level, for both cases in items (i) and (ii) above, the number of infected
individuals when there is provision of Ebola viruses is larger than the corresponding
number of infected individuals in the absence of such provision.

(iv) Along the lines of the above-mentioned findings, there is a natural control measure
to low down the severity of the disease and even to eradicate it. That is to educate
people not to eat bush meat and/or fruit bats, to avoid unsafe funeral or burial ritual
practices. This educational programme paid off during the 1976 DRC (Zaïre) Ebola
outbreak where the disease was cleared out of the afflicted population.

From the numerical analysis and computational point of view, we introduced the NSFD
approach which to the authors’ best knowledge has never been applied to the modelling
of EVD. We proved analytically and illustrated by numerical simulations that our NSFD
scheme is dynamically consistent with respect to the following properties of the continuous
model: positivity and boundedness of solutions, local and global stability of equilibria.

As the modelling of EVD is not sufficiently developed, this work offers many oppor-
tunities for improvements and extensions. Currently, we are focusing on the following
aspects:

(a) the use of other incidence functions (standard for the direct transmission, and/or
Holling-type functions for the indirect transmission);

(b) the extension of the model to account for the complex ecology of the EVD transmis-
sion;

(c) the multi-species setting to account for the extreme case where a region is attacked by
more than one Ebola virus species;

(d) the effective modelling of the source of the viruses in the environment by incorporat-
ing the dynamics of wildlife and fruit bats;

(e) the incorporation of the human behaviour in the model via educational campaigns
and media broadcasting;

(f) themodelling of some optimal control strategies, such as early detection, isolation and
quarantine, treatment, and sterilization techniques; and

(h) the incorporation of patches to account for the circulation of the disease in many
counties and/or countries as it is the case in Western Africa [6].
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Appendix. Proof of the local stability of E∗ and E# (Proposition 4.3 and
Theorem 5.1)

The proof is provided for E#, and the case of E∗ follows by letting σ = 0.
The Jacobian matrix of the right-hand side of Equation (1) evaluated at the endemic equilibrium

E# is

J =

⎛
⎜⎜⎜⎝

−μ − (β1I + β2D + λP) −β1S 0 −β2S −λS
(β1I + β2D + λP) β1S − (μ + δ + γ ) 0 β2S λS

0 γ −μ 0 0
0 μ + δ 0 −b 0
0 ξ 0 α −η

⎞
⎟⎟⎟⎠ ,

where the subscript (#) is dropped for notational simplicity.
Set

J0 = −μ − (β1I + β2D + λP), J1 = (β1I + β2D + λP); J2 = β1S − (μ + δ + γ ). (A1)

After lengthy calculation, the characteristic polynomial of the Jacobian matrix of J is

P5(X) = −(X + μ)(X4 + k1X3 + k2X2 + k3X + k4),

where
k1 = b + η − J0 − J2,

k2 = J0J2 + J1β1S + bη − (b + η)(J0 + J2) − (μ + δ)β2S − ξλS,

k3 = (b + η)(J0J2 + J1β1S) − bη(J0 + J2) + ((μ + δ)β2S + ξλS)(J0 + J1)

− α(μ + δ)λS − ξλSb − (μ + δ)β2ηS,

k4 = bη(J0J2 + J1β1S) + (J0 + J1)(α(μ + δ)λS + ξλSb + (μ + δ)β2ηS).

(A2)

In accordance with Routh–Hurwitz criterion, it suffices to prove that the two statements below hold:

ki > 0, i = 1, 2, 3, 4. (A3)

k1k2k3 > k23 + k21k4. (A4)

At equilibrium, Equation (5) leads to

(μ + δ + γ )I = (β1I + β2D + λP)S. (A5)

It follows from the expressions of J0 and J2 in Equation (29) that

−(J0 + J2) = μ + (β1I + β2D + λP) − β1S + (μ + δ + γ )

= μI + (β2D + λP)S + (β1I + β2D + λP)I
I

. (A6)

Thus, from Equation (30)

k1 = b + η + (μ + β1I + β2D + λP) + (β2D + λP)S
I

> 0. (A7)

Once again, at equilibrium, we have

bD = (μ + δ)I and αD + ξ I = ηP + σ , (A8)

from which it follows that

J0J2 + J1β1S = (μ + δ + γ )(μ + β1I + β2D + λP) − μβ1S. (A9)

https://doi.org/10.137/journal.pone.0145167
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Using Equations (A5) and (A9), we have

k2 = (μ + δ + γ )(μ + β1I + β2D + λP) + bη

+ (b + η)[μI + (β2D + λP)S + (β1I + β2D + λP)I]
I

− μβ1S − ((μ + δ)β2S + ξλS)

= (μ + δ + γ )I(μ + β1I + β2D + λP) + bηI
I

+ (b + η)[μI + (β2D + λP)S + (β1I + β2D + λP)I]
I

− μβ1SI + bβ2DS + ξλSI
I

,

and equivalently

k2 = (β1I + β2D + λP)(μ + β1I + β2D + λP)S
I

+ (b + η)[μI + (β2D + λP)S + (β1I + β2D + λP)I]
I

+ bηI − (μβ1SI + bβ2DS + ηλSP) + αλSD + σλS
I

.

Expanding and simplifying the latter expression yields

k2 = μ(δ + γ )S + (β1I + β2D + λP)2S + (b + η)(μI + (β2D + λP)I
I

+ bβ2SP + αλSD + σλS + ηλSD + bηI
I

> 0. (A10)

From Equation (A9), we have

α(μ + δ)λS + ξλSb + (μ + δ)β2ηS = λS[α(μ + δ) + bξ ] + ηδβ2S

= λS
[
α(μ + δ) + ξ(μ + δ)I

D

]
+ η(μ + δ)β2S

= δ[λS(αD + ξ I) + ηδβ2DS]
D

= (μ + δ)[λS(ηP − σ) + η(μ + δ)β2DS]
D

= (μ + δ)η(λSP + β2SD)

D
− σ(μ + δ)λS

D
.

Thus

k3 = (b + η)[(μ + δ + γ )(μ + β1I + β2D + λP) − μβ1S] − μ((μ + δ)β2S + ξλS)

− bη[−μ − (μ + δ + γ ) − (β1I + β2D + λP) + β1S]

+ σ(μ + δ)λS
D

− η(μ + δ)(λSP + β2SD)

D
= (b + η)(μ + δ + γ )(μ + β1I + β2D + λP) − μ(b + η)β1S

− μ((μ + δ)β2S + ξλS) + bημ + bη(μ + δ + γ )

+ bη(β1I + β2D + λP) − bηβ1S + bσ(μ + δ)λS − bη(μ + δ)(λSP + β2SD)

bD
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= (b + η)(μ + δ + γ )I(μ + β1I + β2D + λP) − μ(b + η)β1SI
I

+ bημI + bη(μ + δ + γ )I − μbβ2SD − μξλSI
I

+ bη(β1I + β2D + λP)I − bηβ1SI + bσλS − bη(λSP + β2SD)

I
.

After some algebraic calculations and using Equation (A5), we have

k3 = (b + η)(β1I + β2D + λP)(μ + β1I + β2D + λP)S
I

+ bημI − μ(b + η)β1SI − μbβ2SD − μξλSI
I

+ bη[(μ + δ + γ )I − (β1I + β2D + λP)S] + bσλS + bη(β1I + β2D + λP)I
I

,

and equivalently

k3 = (b + η)(β1I + β2D + λP)(μ + β1I + β2D + λP)S
I

+ bημI − μ(b + η)β1SI − μbβ2SD − μξλSI
I

+ bσλS + bη(β1I + β2D + λP)I
I

.

Further expansion, combined with Equation (A8), simplifies the expression of k3 to

k3 = (b + η)(β1I + β2D + λP)2S + bη(β1I + β2D + λP)I
I

+ bημI + bμλSP + ημβ2SD + σμλS + bσλS
I

> 0. (A11)

Finally, by Equations (A8) and (A9) the expressions of k4 in Equation (A2) reduces after simplifica-
tions to

k4 = μσλS + η(μ + δ)(β1I + β2D + λP)2S
D

> 0. (A12)

This proves Equation (A3).
Regarding Equation (A4), the computations are lengthy. To avoid them, we rewrite k4 in

Equation (A2) as

k4 = bη(μ + δ + γ )(β1I + β2D + λP) − M, (A13)

where

M = bημβ1S + μ(αδλS + bξλS + ηδβ2D).

Therefore,

k21k4 = bη(μ + δ + γ )(β1I + β2D + λP)k21 − Mk21. (A14)

In view of Equation (A14), the claim in Equation (A4) will follow if we prove that

k3(k1k2 − k3) − bη(μ + δ + γ )(β1I + β2D + λP)k21 > 0. (A15)
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It can be shown easily that

k1k2 − k3 = bη(b + η) + (b + η)2(μ + β1I + β2D + λP)

+ (b + η)(μ + β1I + β2D + λP)2 + bη(β2D + λP)S
I

+ (b + η)(μ + β1I + β2D + λP)(β2D + λP)S
I

+ μ(β2D + λP)(μ + β1I + β2D + λP)S
I

+ (μ + β1I + β2D + λP)(β1I + β2D + λP)2S
I

+ μ(β2D + λP)2S2

I2
+ μ(β2D + λP)(β1I + β2D + λP)2S2

I2

+ ησλS + (b + η)(bλSP + αλSD + ηβ2SD)

I

+ (β1I + β2D + λP)(bλSP + αλSD + ηβ2SD + σλS)
I

+ (β2D + λP)(bλSP + αλSD + ηβ2SD + σλS)S
I2

> 0, (A16)

and if H = bη(μ + δ + γ )(μ + β1I + β2D + λP), then

Hk21 = bη(β1I + β2D + λP)(μ + β1I + β2D + λP)Sk21
I

= bη(b + η)2(β1I + β2D + λP)(μ + β1I + β2D + λP)S
I

+ bη(β1I + β2D + λP)(μ + β1I + β2D + λP)3S
I

+ 2bη(b + η)(β1I + β2D + λP)(μ + β1I + β2D + λP)2S
I

+ 2bη(b + η)(β2D + λP)(β1I + β2D + λP)(μ + β1I + β2D + λP)S2

I2

+ 2bη(β2D + λP)(β1I + β2D + λP)(μ + β1I + β2D + λP)2S2

I2

+ bη(β2D + λP)2(β1I + β2D + λP)(μ + β1I + β2D + λP)S3

I3
. (A17)

Moreover, since k3 in Equation (A11) and k1k2 − k3 in Equation (A16) are positive, we can write
the product of these two terms in the form

k3(k1k2 − k3) = U + Y , U > 0, Y > 0,

where U includes specifically the right-hand side of Equation (A17). To achieve this, the expansion
of k3(k1k2 − k3) yields the following candidate for U:

U = bη(b + η)2(β2D + λP)2S
I

+ b2η2(β2D + λP)S
I

+ (b + η)3(β1I + β2D + λP)2(μ + β1I + β2D + λP)S
I
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+ (b + η)2(β1I + β2D + λP)2(μ + β1I + β2D + λP)2S
I

+ bημ2(β2D + λP)(μ + β1I + β2D + λP)S
I

+ bημ(β1I + β2D + λP)2(μ + β1I + β2D + λP)S
I

+ bημ(b + η)(β2D + λP)(μ + β1I + β2D + λP)S
I

+ b2η2(β2D + λP)(β1I + β2D + λP)S
I

+ bη(b + η)(β2D + λP)(β1I + β2D + λP)(μ + β1I + β2D + λP)S
I

+ bημ(β2D + λP)(β1I + β2D + λP)(μ + β1I + β2D + λP)S
I

+ bη(β1I + β2D + λP)3(μ + β1I + β2D + λP)S
I

+ bη(b + η)(β2D + λP)(β1I + β2D + λP)2S2

I2

+ bημ(β2D + λP)2(β1I + β2D + λP)S2

I2

+ bη(β2D + λP)(β1I + β2D + λP)3S2

I2

+ μ(b + η)(β2D + λP)(β1I + β2D + λP)2(μ + β1I + β2D + λP)S2

I2

+ (b + η)(β2D + λP)(β1I + β2D + λP)3(μ + β1I + β2D + λP)S2

I2

+ (b + η)2(β2D + λP)(β1I + β2D + λP)2(μ + β1I + β2D + λP)S2

I2

+ bημ2(β2D + λP)2S
I2

+ bημ(β2D + λP)(β1I + β2D + λP)2S2

I2

+ μ(b + η)(β2D + λP)2(β1I + β2D + λP)2S3

I3

+ (b + η)(β2D + λP)(β1I + β2D + λP)4S3

I3
.

This completes the proof of Equation (A4). Thus, E# is local asymptotically stable.
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